

Supervision and control XML-based
from Windows Vista to Windows CE

I/O Drivers
Reference Guide

Cod. DOCS 11 DRV-E Build 1101

2

Table Of Contents
1. INTRODUCTION ... 3

1.1. INTRODUCTION TO DRIVERS ... 3
1.2. DRIVERS IN PROJECTS ... 3
1.3. LINKING TO MEMORY AREAS .. 5
1.4. DYNAMIC ADDRESSING ... 6
1.5. TASK ADDRESSING ... 7
1.6. DRIVER INSTALLATION ... 8
1.7. DRIVER DUPLICATION .. 9
1.8. RUNNING DRIVERS .. 10
1.9. HARDWARE RS232 ERRORS ... 11

2. GENERAL SETTINGS ... 13
2.1. GENERAL (DRIVERS) .. 13
2.2. DEBUG .. 15

3. STATION SETTINGS ... 17
3.1. STATIONS .. 17
3.2. GENERAL (STATIONS) ... 17
3.3. SERIAL PORT SETTINGS (SERIAL DRIVERS ONLY) 19
3.4. QUEUE SIZE .. 19
3.5. TIMEOUTS .. 20
3.6. BRIDGING SERVICE SETTINGS .. 20
3.7. TAPI SETTINGS (SERIAL DRIVERS ONLY).. 22
3.8. TCP/IP SETTINGS (ETHERNET DRIVERS ONLY) 24
3.9. RAS SETTINGS (ETHERNET DRIVERS ONLY) 25
3.10. SPECIAL TAPI AND RAS CONFIGURATIONS 26

4. TASK SETTINGS ... 27
4.1. TASKS .. 27
4.2. STATIC TASKS ... 27
4.3. DYNAMIC TASKS ... 30

5. IMPORT DEVICE DATABASE 33
5.1. IMPORT DEVICE DATABASE ... 33

6. ERRORS ... 35
6.1. ERROR DESCRIPTIONS .. 35

7. ABOUT ... 39

3

1. Introduction

1.1. Introduction to Drivers
This section includes a detailed description of the settings to configure in the Supervisor
Communication I/O Drivers used in supervision projects. To access the communication drivers
settings, select Real Time DB and List Comm.Driver from the project explorer, then right click on the
driver name.

The drivers are dynamic libraries (.DLL files) which, based on 'exception-based' logic, transfer the
information received from the connected device's memory areas to the Supervisor memory areas and
vice-versa, according to predefined settings.
By using the Driver's settings you can specify the associations between the field variables and the
Supervisor variables. The system, through the serial port, the fieldbus or the network being used,
will read and write the variables 'from' and 'to' the plant, according to the set modalities.

The thread pooling technology, adopted by the Supervisor drivers, is used for exchanging
information with the field in the most efficient way, by managing automatically optimized
communications according to the effective use of the variables in the project being run.
In fact, only the effectively-in-use variables from the system will be exchanged with the field,
leaving the driver the job of optimizing and making communications more efficient.

The Supervisor Drivers have been enhanced to make Supervisor communication extremely more
powerful and scalable.
Thanks to the common to all driver features, you will be able to get:

1. Optimized and efficient communication
2. Links to PLC addresses that can be managed directly in Tags or indirectly through 'Tasks'
3. Runtime configurability through VBA Script interface
4. Automatic device database importing
5. Bridging function to allow transparent access to external devices via modem (ie. tele-service)
6. TAPI functions to allow automatic calls for remote serial devices via modem
7. RAS functions to allow automatic calls for remote ethernet devices via modem
8. Advanced debugging functions
9. Immediate and direct cable and communication Testing

1.2. Drivers in Projects
A supervision project is built with a set of resources and objects and once compiled and processed in
Runtime will manage information, logics and user interfaces as required.
Communicating with the field is determined by the usage of Communication Drivers (as well as the
OPC technology). The Drivers, in forms of dynamic libraries, have the task of reading or writing in
the memory areas of the device, connected to the memory areas managed by the project.

C O M M U N I C A T I O N _ D R I V E R S

4

For instance, when using PLCs the driver will use the communication
protocol provided by the device for exchanging data between the memory
areas of PLC and the Supervisor and vice-versa, according to the
configurations and data associations set in the driver properties and/or in
the variable properties of the Supervisor project.

The driver can read or write in the memory areas and the transmission modalities are determined by
the devices constructors, therefore it is advised to carefully read the instruction provided with the
specific device you wish to connect to.

Carefully read and follow the specifications given by the hardware
device constructors for connecting and associating data between
the device and the Supervisor.

Independent of the protocol and the hardware constructors, the Supervisor drivers allow the
programmer to use the same user interface to configure and setup communications according to the
configuration possibilities provided.

The structure of a communication driver is described in the illustrated layout below:

According to the layout above, the driver manages communication protocol at a low level.

1. The driver requires the setting of the main communication parameters by using the
'Station' concepts (the relative parameters need to be set according to whether you are
dealing with serial or network drivers)

2. By means of "Tasks" concept, the driver consents 'indirect' association between the device
addresses and the variables of the Supervisor project to be setup. The tasks offer the
possibility to communicate in data blocks, by setting a variable (or a group of variables) in
association to a device's address (or start address). This way the user can configure links to
the device's memory areas in indirect mode and therefore independently from the project.

3. By using the 'Dynamic Address' concept, the driver consents a direct association of the
memory address in the project's Tag properties. In this way the variable points directly to the
devices address, leaving the driver the job of dynamically creating communication tasks
which will always be optimized.

4. The driver always works with the Supervisor project's "Real time Database" . The
variables are therefore associated directly (Tags property) or indirectly (Tasks). In any case
communication is optimized according the 'Variables in use' concept.

5. The driver's configuration is saved in the appropriate XML files in the project's 'Resources'
folder. The files are based on XML meta-language, as with all the project, for maximum
transparency. The driver's files are:
<driver_name>.drvsettings = files containing the driver's general settings
<driver_name>.dynsettings = files generated upon runtime start with the characteristics of

I N T R O D U C T I O N

5

the calculated dynamic tasks.

The Supervisor Drivers are libraries which can also be used independently
of the Supervisor projects, that is, they can also be inserted in other
programming environments which are compatible with the ActiveX
technology.

1.3. Linking to memory areas
The Supervisor Real Time DB tags are dynamically mapped in the PC's memory, independently from
the communication techniques used. The mapping in the Supervisor Tags' memory areas is setup in
the 'general properties' of each single tag.
The variables can be mapped in two different data areas, the data area defined as 'Not Shared
Memory' (proposed for default) and the data area defined as 'Shared Memory'.

'Not Shared' Supervisor Area
The 'Not Shared' data area is the area proposed as default when creating Tags in the Supervisor
project. When the 'Not Shared' areas are used, the Supervisor will decide how and where its Tags
will be allocated in memory.
In this way the user does not need to worry about allocating the tags and where the Supervisor will
allocate them at runtime. The user should only specify addresses for links to devices, if any.
Usually this selection is preferably used to avoid allocating incorrect data internal the Supervisor. The
Supervisor automatically manages its information internally and only communicates with the driver
when the variable is connected to the device.

'Shared' Supervisor Area
The 'Shared' data area, when selected, permits you to specify data allocation inside the memory
areas of the Supervisor, independently of the communication driver. When selecting this area
the programmer is required to assign the area and absolute address of the Tag in the
Supervisor's memory.
Therefore the programmer must be very careful in assigning the correct address to avoid
superimposing other variables in memory by mistake.
The Shared area requires the selection of the Area Type by choosing one of the following:

C O M M U N I C A T I O N _ D R I V E R S

6

1. Input Area
2. Output Area
3. Flag Area (Internal)

Shared Area variables can be exchanged with the field using Input, Output or Input/Output
independently from the type of area selected.

Link to device
A task defines the link between a group of Supervisor's tags and the corresponding memory area of
the device, also specifying the methods to access and manage data.
The Supervisor offers you the possibility to set the driver's communication using two different task
concepts: the 'static' task (usually defined simply as 'task') and the 'dynamic' task.

Dynamic Tasks: these Task are automatically created by the driver at project startup, based on the
links to device's addresses set in the 'Dynamic Address' properties of each single tag. The driver will
manage tags grouping and performances optimization.

Static tasks: these Task are defined by the designer who has the responsibility to define grouping
and communication parameters.

1.4. Dynamic Addressing
The Supervisor permits the device's address to be specified directly in the Tag's general properties,
in the project's Real Time Database resource. When using this technique the driver generates
communication tasks in dynamic mode, according to the optimization and grouping concepts of the
predefined data. At project startup the driver will generate a number of tasks by grouping data
blocks and will activate communication only when the variables are used in the project.
To assign the address in dynamic mode, you need to:

1. Select "Dynamic" from the tag's general properties window
2. Select the Comm. Drivers tab from the Tag Browser window
3. Double click on the desired driver in the list. The 'Task property' window for assigning the

address will appear
4. Specify the address in the 'Device address' field
5. Specify the data management (read, write or both) in 'Type' field

The tag's dynamic address can also be specified by directly typing it in the 'Dynamic' property edit
box. The address syntax is:

[DRV]<Name of Driver>.Sta=< Name of station>|Addr=< Address of device>

Please refer to the specific addressing documentation of each
Driver in order to use the appropriate syntax.

Dynamic Task Concepts
As mentioned above, the Supervisor will dynamically create a number of tasks to manage the
communication at the project startup.
The "Minimum Threshold" parameter, in driver's general properties, is a basic parameter used to
determine the automatic task generation. This parameter sets the minimum value as the
fragmentation threshold in generating a number of tasks.

For instance:

VAR00001 is linked to the device's word 0 address
VAR00002 is linked to the device's word 3 address
VAR00003 is linked to the device's word 12 address
VAR00004 is linked to the device's word 18 address

The 'Minimum Threshold' parameter is set to 5 by default. In this example when the project starts,
the driver dynamically creates the '.dynsettings' XML file in the project's 'Resources' folder, grouping
the tags in 2 dynamic tasks.

I N T R O D U C T I O N

7

In the first task the words from 0 to 3 are read, in the second task (needed because the address of
the next word to be read exceeds 5 bytes distance as indicated by the' Minimum Threshold'
parameter) the words from 12 to 18 are read.

If, however, we set the 'Minimum Threshold' parameter at 20, the driver will dynamically
create one task only by reading from the word 0 to the word 18 at project startup.

The number of tasks generated automatically depends on the value
set in the 'Minimum Threshold' and 'Aggregation limit' parameters.

The tags associated to the driver in 'dynamic' mode will be automatically managed by default in
read-write mode by the driver. The driver will decide whether to manage only in write or in read-
write mode according to the possibilities offered in the associated device's area. Moreover this
setting can be changed in the 'Task property' window or through the '.dynsettings' XML file
generated automatically at the start of the project run. The data in the XML file regarding run type is
as follows:

<TypeName> where it is possible to change the default value 1 with the following values:
0 = Input (read only)
1 = Input/Output (read/write)
2 = Output on exception (write only if value has changed)
3 = Output continuous (write anyway)

1.5. Task Addressing
The Supervisor permits the association between the device's addresses and the project's Real Time
Database tags' addresses in an indirect mode using 'static' tasks. By using this technique, the driver
will require the association between a set of project tags and the correspondent device's memory
areas to be specified in the configuration properties of each single Task. In addition to this the type
of communication also needs to be set (read, write, or both).
The list of generated tasks will be saved in the "drvsettings" XML file and therefore will remain there
independently from the project.

To create and configure a task, you need to:

1. Select the 'Tasks' card from the driver settings
2. Insert a new Task using the 'Add' button
3. Configure the properties of the task according to the data exchange requirements
4. Confirm with OK and proceed with the next task if needed

Important Note: to set a list of tags in the task which should be
consecutive starting from the device address , type in the
'Variables' field the names of the tags, separated by the ';'
character. The ellipse button helps in selecting the tags from the
Real Time database tags' list.

A task created with this procedure can include one or more tags, all of the same data type (i.e all
word or all float) and consecutive in device memory area. The address to specify for the task is the
starting address, corresponding to the first tag in the list.
Only a few drivers allow task creations which include different types of variables (i.e. Byte, Word,
etc). For further information, please consult each driver's manual documentation.

The following Task execution principles are to be kept in mind:

Input This kind of task reads data from the connected device and writes it

in the Supervisor tags. They can also be executed on event. In this
case the task will be executed only when the associated tag is set
different from 0. When the Input task is not executed on event, it
will be executed with the polling technology together with the other
input tasks.

Output This kind of task writes the Supervisor Tag data values in the
connected device. The output tasks are executed by the Supervisor

C O M M U N I C A T I O N _ D R I V E R S

8

with the 'Event-driven' technology, which means only when there is
a data variation in the Supervisor which needs to be notified to the
PLC or to the connected device. The driver also permits continuous
data writing.

Input/Output The input/output tasks are managed in 'polling' mode to keep data
read from the connected device updated, whereas the writing of
data is performed on event only when there is a data change in the
Supervisor, by rewriting the changed data to the connected device.
The input/output tasks, however, always read data from the device
first, then write data when necessary.

COM (OLE2) The Supervisor can also manage tasks which have not been
configured directly in the driver, but performed at runtime by the
VBA Basic Script. In this case the tasks are executed by the driver
according to script code written by the user, by executing the read
or write tasks in synchronous or asynchronous mode.

Even though the programmer must be very careful when using Tasks, he/she will however have the
benefit of being able to decide how data is to be exchanged and not the Supervisor.
The communication tasks are executed by tag name only and not by absolute address.

Remember that the tasks also allow the COM (Component Object Model)
driver interface to be used for handling or performing any
communication task using VBA scripts.

1.6. Driver Installation
The Supervisor installation provides the automatic installation of the available drivers library together
with the platform.
The Supervisor Drivers, being built as simple .DLL files, can be easily enlarged or updated
independently from the development platform. To update or install a new driver, just copy the
relevant .DLL file into the Drivers folder, which is found inside the Supervisor installation folder (I.e.
 C:\Program Files\Progea\Movicon11.2\Drivers).

Project designers may choose which communication driver to insert and configure in their various
applications, simply selecting it from the list provided.
The insertion and setting up of a communication driver is done in Supervisor programming mode,
through the 'Comm. Drivers List' resource from the 'Real Time DB' group in the 'Project Explorer'
window. When activating the 'Add new Comm. Driver' command a dialog window, containing a list of
the drivers available, will display.

I N T R O D U C T I O N

9

The botton window shows important data linked to the selected communication driver:

 Brief protocol description
 List of supported devices
 Cards or libraries needed
 Any driver restrictions: areas not supported, connections with more than one PLC not

possible, etc.

Once the driver has been inserted, it can be configured through the Supervisor 'Properties Window'.
More than one communication driver can be inserted into a single project, as long as they comply
with the options set on the hardware key.

A new item called the ""Renaming Manager" has been added the Communication Drivers list of
features which allows you to know whether the driver supports the renaming management. Those
drivers that support this management, option set to 'true', consent variables to be displayed with
names modified within their configuration window; and to support apply new name command.

1.7. Driver Duplication
The Supervisor provides the possibility to install two or more drivers in the system which can be
selected from the list of those available as seen in the previous paragraphs. However, if you wish to
install two or more identical drivers (for PLCs or devices of the same type), you will need to follow
the simple indications as described below.

For instance, you may need to install two or more drivers of the same type to communicate in the
same system environment at the same time but it is not enough to simply set two different Stations
with the same protocol for the device of the same type.

Example: you want the PC, on which the Supervisor is installed, to communicate with two identical
devices on two distinct PC communication channels. To duplicate the Communication Driver you
need to:

1. Duplicate the driver's DLL file which you can find in the "Drivers" folder in the Supervisor
installation folder. The copied file must have a name different from the original one, for
instance the same name plus an increasing index.

2. Create in the "Drivers.xml" file a new block indicating the new .DLL file, just by duplicating
the block of the original file and giving it a new name and description, so that they appear as
two identical drivers but with different names and descriptions on the Supervisor Driver list.

When a driver is duplicated it will result and have all the effects of
a new driver, therefore you will need to provide an additional driver
in the license options. When using two drivers, even though of the
same type because duplicated, the license must be enabled for two
communication drivers.

A practical example:

You wish to manage a project where two "Modbus Serial" drivers must be used. The following steps
must be carried out:

Dll Duplication
 Make a copy of the original "Modbus.dll" in the Supervisor Installation "Drivers" sub-folderand
and call it i.e. "Modbus1.dll".

Drivers.xml file Modification
Open the "Drivers.xml" file, located in the Supervisor installation "Drivers" sub-folder, with a text
editor. Add the new driver in the <DriverFactory Factory="ModBus"> tag, by specifying a description
as pleased and the name of the new dll. For example: <Driver Name="Modbus Serial
1">ModBus1.dll</Driver>. Modified file should result as:

<?xml version="1.0" encoding="ISO-8859-1"?>
<DriverList>

<DriverFactory Factory="ModBus">

C O M M U N I C A T I O N _ D R I V E R S

10

<Driver Name="Modbus TCPIP">ModBusTCPIP.dll</Driver>
<Driver Name="Modbus Serial">ModBus.dll</Driver>
<Driver Name="Modbus Serial 1">ModBus1.dll</Driver>

</DriverFactory>
...
...

In this way, when you open the window with the list of available Drivers, you will also find the one
you have just duplicated.

1.8. Running Drivers
The installed communication driver or drivers will be run at the application project's startup and will
remain active for the whole duration of the project's processing, according to the execution modes
chosen or the VBA scripts logic using the driver COM (Component Object Model) interface.
At each activation of the communication with the field, the system will record a communication
status notification message in the Historical Log.

The presentation of a green coloured led on the Status Bar on the
Supervision window's bottom border (if displayed) means that the installed
driver is communicating correctly with the field. The red coloured led
indicates that there is a communication error.

Any communication problems (cable, connections, settings, etc.) will generate communication errors
that will be alerted by the driver in the Status Bar and recorded in the Historical Log.

Note: the drivers are independent of the project, and their configurations
are saved in separate appropriated files, which are identified by the
".drvsettings" and "dynsettings" extensions. This philosophy guarantees
that the project is kept intact when changing PLCs or communication
devices.

The driver can be subordinated to the conditions established by the programmer during runtime
execution.

I N T R O D U C T I O N

11

1.9. Hardware RS232 Errors
The Supervisor Communication Drivers auto-diagnosis emits codes of hardware communication
errors, according to the indications supplied by the recording status of the UART chip of the serial
port installed on the PC.
We recommend to use serials ports with UART 16550A chips which use FIFO16 byte data
management. The type of serials installed on the PC is easily detected by running the Microsoft
Diagnostics MDS.EXE file.

The communication hardware errors are generally due to the following possible causes:

 Serial line disturbances
 Potential difference between the device masses.
 Serial cards inadequate for the performances required
 Defective or inadequate communication cables
 Baud rate too high for the hardware being used
 Communication device breakdown

The hardware error messages supplied by the driver relate to the codes emitted on the error register
of the serial UART chip.

When a generic hardware error occurs, the Supervisor reports a number, translated in
binary, you can use to identify the error or errors by confronting each single bit whose
meanings are described in the table below:

VALUE CODE MEANING

1 RX OVER The serial has received more characters than
the buffer capacity can hold

2 OVERRUN The serial has received a character before the
previous one was processed by the system

4 RX PARITY Error in parity, inconsistency between the
parity received and the one set.

8 FRAME Data frame error. The data received does not
respect the set characters (length, stop bit,
etc.)

16 BREAK Break Status requested by participant

All the other communication errors depend on the specified protocol,
therefore you need to refer to the indications of that specific driver. The
driver error messages are displayed on the status bar and can be viewed in
the Historical Log.

C O M M U N I C A T I O N _ D R I V E R S

12

13

2. General Settings

2.1. General (Drivers)
Some of the properties common to all the communication drivers can be configured on this setting
card.
It is not generally necessary to change any of the default settings.

Wait Time
The pause time, expressed in milliseconds, between the execution of two tasks (data blocks) of
successive communication. It may be necessary to change the default value for devices which need a
wait time between one interrogation and the next (i.e. devices with poor performances). It can be
useful to modify the default value also when it is necessary to lighten the workload of the CPU.

Time-out
The time-out time for executing synchronized tasks. The value is expressed in milliseconds.

Minimum Threshold
This parameter determines the minimum threshold for the fragmenting of data blocks exchanged
with the device. The Supervisor automatically calculates (at project startup) the size and quantity of
dynamic tasks to be created by the driver for dynamic variables (tags with dynamic addresses)
communication.
The Supervisor, in fact, tries to optimize the communication grouping the highest number of data in
the same task. When the data is linked to addresses distanced between each other, this value
determines the distance in bytes which allows the Supervisor to decide whether to create a new task
for the next data block.

Example:

VAR00001 is linked to the device's word 0 address
VAR00002 is linked to the device's word 3 address
VAR00003 is linked to the device's word 12 address
VAR00004 is linked to the device's word 17 address

The driver's 'Minimum Threshold' parameter is set to 5 as default. In this example the driver will
dynamically create the '.dynsettings' XML file in the project's 'Resources' folder, and the driver will
 generate 2 dynamic tasks.
In the first task the words from 0 to 3 will be read, in the second task (which is necessary because
the next word to be read is to an address which exceeds 5 bytes as indicated by the Minimum
Threshold' parameter) the words from 12 to 17 are read.
If, however, we set the 'Minimum Threshold' parameter at 20, the driver will dynamically create one
task only by reading from the word 0 to the word 18 upon project startup.

The number of tasks automatically generated depends on the
value of 'Minimum Threshold' and 'Aggregation Limit' parameters.

Aggregation Limit

This parameter allows you to specify the maximum number of bytes to be aggregated for each
dynamic task. By leaving this parameter to zero the driver will use the maximum value set in the
selected protocol as a maximum limit. Changing this parameter value may be necessary when using
devices which have a lower maximum byte number limit compared to the protocol being used for
exchanging tasks.

Synch.Startup
This option determines the synchronization between the logic and driver communication at the
project's startup.
When this option is set to 'True', the Supervisor will wait until the static input tasks have been
completely executed before processing the project's logic and scripts.
Though this option will cause the project to take longer in starting up, the logic will run with
'updated' input values ensured.

C O M M U N I C A T I O N _ D R I V E R S

14

VBA Interface

Indicates whether the driver supports the COM (Component Object Model) interface. The COM
interface, also defined as OLE2, grants the use of VBA script logic for handling the driver, according
to the methods, the properties and the events described in the appropriated documents.

Polling Time
This parameter, expressed in milliseconds, represents the minimum polling time for executing tasks
for updating data when variables are in use.
This value will be obtained by all the Dynamic tasks with the same Polling Time (Not all drivers allow
you to specify a Polling Times for each Dynamic task). As regards to Static tasks, this value is
inserted as the default value in the task's property ("Polling Time") when created. This value can
then be changed through the Static Task's property afterwards.
Setting this value to 0, meaning that the data is updated with the highest velocity possible.
A higher value can be set, for example, when the data does not require rapid updating times.

Unused Polling Time
This parameter, expressed in milliseconds, allows data updating to be forced even when the tags
are not in use, establishing, however, a polling time.
This value is obtained by all the Dynamic tasks, which all have the same Unused Polling Time.
 However, this value is inserted in Static Task properties ("Unused Polling Time") as the default value
when created. This value can then be changed through the Static Task's property afterwards.

When this parameter is set to 0, the tasks will not be executed when the
tags are not in use.

Error Polling Time

This parameter, expressed in milliseconds, determines the polling time of a station (device) when it
is in error; i.e. when there is a station communication error, its tasks are no longer performed with
this number of milliseconds. Please note that, in cases of errors, all the station's tasks are suspended
(no more will be performed) except the one causing the error.

Protocol Priority
This box is used for setting the communication thread priority, which is the priority given to the
driver's execution in respect to other Supervisor processes.
The possible values, starting from low to high priority, are:

 Normal
 High
 Very High
 Real Time

Take extreme care not to exceed the CPU workload (CPU at 100%), when
changing the default value (Normal).
It may be useful to try and increase the driver's process priority due to
elevated communication loads. In this case it is advised to set the Wait
Time parameter at a value other than 0, to avoid too many system
resources being used.

Suspend tasks in case of error

This property will activate only for those drivers that allow symbolic Task addressing, "Tag Name"
and will remain deactivated with 'True' value, for those drivers that allow only numeric addressing,
"Address Type".
When setting this property to "True", when a communication error is verified all the tasks will be
disabled except the job generating the verified error. This behaviour may result inadequate in cases
of drivers that, such as Beckhoff TwinCAT or Allen-Bradley Ethernet/IP, consent there use of
symbolic addressing (device variable names). In this case this option can be set to 'False', allowing
all tasks to be kept active even when errors occur. The following will happen when setting
 "Suspend tasks in case of error" to "False":
The driver will carry on with the next interrogations even in cases where interrogations are
unsuccessful
Unsuccessful interrogations will be further attempted after the time indicated in the "Error polling
Time" parameter has expired
Any communication errors will however reflect on the communication bit status
 (_SysVar_:CommDriverStatus)

G E N E R A L S E T T I N G S

15

Management of "In Use" state for structures
This parameter, if set to True, consents all members of a Structure variable in use even though only
part of it is effectively in use in the project. The will ensure that all of the structure variable
members are exchanged by the even when only when of them is in use in the project. When setting
this property to "False" the "In Use" state will be managed for each structure member singularly,
therefore only those members effectively in use in the project will be exchanged by the driver.

CAUTION! Setting thie property to True might effect communication
performances especially project has loads of structure variables containing a
considerable number of members.

Direct Output for Input/Output
This parameter is used for changing the driver's behaviour when performing dynamic "input/output"
tasks. If the driver's value is "False", in cases where the variable value has been changed in the
supervisor, the output operation will be preceded by an input operation and then, if the value in
device does not change, will finish off with the output operation. However, when setting this
parameter with a "True" value, it will be possible to perform the input/output task directly in output
without having to perform a re-read.

2.2. Debug
Some of the properties concerning the Debug, common to all the communication drivers, can be
configured on this setting card.
It is not usually necessary to change any of the default settings.

Debug Window
Default value = False. When selecting 'true', the driver shows all the diagnostic and debug messages
generated by the driver in the appropriated Debug window (they can also be viewed in the
Supervisor workspace Output bar).

The debug window activation may slow down the task activation and,
in general, the communication speed. We suggest you use this option
only when strictly needed, such as in the debug phase.

Max Entries

Default value = 10000. The value, relating to the maximum number of diagnostic message strings
displayed in the debug window before being recycled, is set in this box. When the default value is
left, the window will keep the last 10,000 message strings displayed.

Enable Log to file
Default value = True. If "True", the driver will record on file all the Debug's diagnostic messages
generated by the driver.
The amount of recorded data is defined in Max Entries setting, while the file name and path are set
in the Log FileName property.

Log FileName
If no file name is specified here, the driver's diagnostic Log file name will be 'System.log' and it will
be located in ProjectFolder\LOGS folder. To locate it elsewhere, please specify in this box the file
name and path for the driver's diagnostic Log.
The generated file will be a standard text file.

C O M M U N I C A T I O N _ D R I V E R S

16

17

3. Station Settings

3.1. Stations
In this page you need to insert and configure the 'communication stations'. Each driver should
have at least one communication station inserted and configured.

Please remember that it is possible to set up the driver communication
both by using 'dynamic tasks' or 'Tasks' concepts (described in the
appropriate chapters). The dynamic tasks are created automatically by the
driver upon project startup,using the links to the device's addresses set in
the 'Dynamic Address' properties of each single tag.

The communication stations allow you to set, like the driver, how communication must be managed,
where each station represents a communication channel towards the configured device.

Add
The "Add" button allows you to insert a new 'station' for the communication driver. When inserting a
new station a window will automatically display for setting the parameters of the communication
required.
Once the station or stations have been inserted you can change or remove them by using the
buttons indicated below.

Edit
The 'Edit' button allows you to modify the parameters of a previously inserted station. Therefore you
first need to select the station you wish to modify then use the 'Edit' button or double click on the
station name in the list.

Remove
The "Remove" button allows you to delete a previously inserted station. Therefore you need to first
select the station you wish to modify then use the 'Remove' button.

Test Cable/Comm.
This button allows you to run a communication test with the device. Thanks to this very handy
functionality the driver will attempt communication to verify whether the cables have been connected
correctly and the main communication parameters have been properly set.

The communication test is invoked by reading specific data according to the
test criteria of each single protocol.
Therefore it might be necessary to refer to the specifications indicated by
each of the drivers to see what kind of test is carried out.
For instance, with generic protocols such as Modbus, the test invokes the
reading of a specific Function Code (FC2) which may not necessarily have
been implemented on the connected device.

Please be reminded again that in each case the test only verifies whether the
cable and general parameter configurations have been done correctly, while
the correct association between data in the Supervisor and the device is
demanded to the project designer whether data in the Supervisor and the
device have been associated correctly.

3.2. General (Stations)
This settings card is used for defining the settings for the selected station in the 'General' properties
group .

C O M M U N I C A T I O N _ D R I V E R S

18

Station Name
Name which identifies the station corresponding to the device with which it is to communicate. The
station name is the one internal the driver.
When more than one station is to be set, each one must have its own name.

Error Threshold
When there are any communication errors, this parameter sets the number or errors to be reached
in order for the Driver to effectively give communication error notification. The internal counter will
not alert any occurrences of communication break-down without re-attempting to retrieve
communication beforehand. When the number of attempts have been reached the driver will give
out an error warning.

State/Command Variable (only managed for drivers using driver base library build 250
and later)

By assigning the name of a numeric variable of the Supervisor (Byte type recommended) to this
property, it is possible to check the communication state with the selected station, to
enable/disable the communication with this station, to start/stop TAPI connections (serial drivers
only) or RAS connections (Ethernet drivers only), and to switch between TCP/IP servers (Ethernet
drivers only).
See the following table for the meaning of the variable bits. Please note that some bits can only be
used to check the state of the station, while other bits can only be used to set the state of the
station (commands).

 The variable's bit 1 can be used to check and modify the station's Active/Inactive state
 Bits 4, 5, 6 can be used to manage a TAPI connection (serial drivers) or a RAS connection

(Ethernet drivers)

A "State/Command Variable" of type bit can be used if the only information needed is the
communication state (bit 0).

Bit 0
(State)

Communication State:
0 = OK
1 = Error

Bit 1
(State/Command)

Station State:
0 = Active/Enable
1 = Inactive/Disable

Bit 2
(Command)

Switch the active TCP
Server

Bit 3
(State)

Active TCP server:
0 = Default Server
1 = Backup Server

Bit 4
(State)

Modem connection state:
0 = disconnected
1 = connected

Bit 5
(Command)

Open modem connection

Bit 6
(Command)

Close modem connection

Bit 7
(Unused)

Always 0

Keep Opened

This property is present in serial drivers only. It allows you to establish whether the driver must keep
the communication port open (and therefore always busy) or not. When the value is set to True , the
driver is loaded at the start up of a project run and always keeps the associated communication
port open (busy).
When setting the value to False, the driver closes the communication serial port after every 'Input' or
'Output' operation has been done, thus leaving the port free.

S T A T I O N S E T T I N G S

19

3.3. Serial Port Settings (serial drivers
only)

In this group of settings you need to set the configurations inherent in the Serial Port Settings
properties group for the selected station.

The serial is managed by the modem's driver when the station's TAPI settings are used for managing
communications via modem. The settings with which the serial is opened are therefore those defined
in the modem's driver's advanced properties and may be different to those set for the Movicon driver
station ("Serial Port Settings").

Port
Default value = 1. Sets the number of the serial port to be used for communicating. I.e. value = 1
for COM1

Note: you need to make sure that no conflicts occur in Windows when using
the ports. For instance, when installing the Com4 port, you need to make
sure that the assigned address and the IRQ are compactible with the PC's
configuration. In order to do this we advice you use addressable serial
cards.

Baud rate

Default value = 9600. Sets the velocity of the serial communication (Baud Rate). The value of the
communication's velocity must correspond to that of the device to be communicated with.

Byte Size
Default value = 8. Sets the amount of bytes required by the communication protocol in use.

Parity
Default value = Even. Sets the parity type required by the communication protocol in use.

Stop Bits
Default value = 1 stop bit. Sets the number of Stop Bits required by the communication protocol in
use.

Flow Control
Default value = None. Sets the data Flow Control type for the type of communication in use. This
property permits the flow of communication data from the connected device's serial port to be
adapted to low level protocol requirements. The default value, 'None', means no flow control,
nevertheless it might be necessary to select a flow control type (i.e. when signalling errors with code
 '1').
The options are:

None: No Flow Control. Control not required by protocol.
Hardware: Flow Control is managed by electric serial line electric signals (i.e. RTS, CTS,
ecc.).
Xon/Xoff: Data Flow Control is Xon/Xoff type.
NONE (Signal disabled): Flow Control set to NONE and serial is set for disabling the DTR
and RTS signal management.
RTS Toggle: Sets the serial for managing RTS signal control in Toggle mode, meaning the
serial keeps signal high when there are characters to be sent.

3.4. Queue Size
In this group of settings you need to set the configurations inherent to the buffer size of the selected
station's serial port.

C O M M U N I C A T I O N _ D R I V E R S

20

These settings are normally reserved for the expert user and
therefore we recommend that you leave the default settings.

Rx Queue
Sets the quantity of data bytes to be managed by the serial port to buffer values being received. The
default value is used if not specified differently.
Expert users can change this value to adapt to the needs of the system being used.

Tx Queue
Sets the quantity of data bytes to be managed by the serial port to buffer values being transferred.
The default value is used if not specified differently.
Expert users can change this value to adapt to the needs of the system being used.

3.5. Timeouts
In this group of settings you need to set the selected station with the configurations inherent in
serial communication time-outs.

These settings are generally reserved for expert users and therefore
it is advised to keep the default settings.

Rx Timeout
Default value = 5000. Sets the wait time interval value, in milliseconds. When exceeded, the driver
notifies time-out of communication reception.
The time-out refers to data being received.

Tx Timeout
Default value = 5000. Sets the wait time interval value, in milliseconds. When exceeded, the driver
notifies time-out of communication transmission.
The time-out refers to data being transmitted.

The following parameters apply to serial driver only:
CD Timeout

Currently not in use. Reserved for future use.

CTS Timeout
Default value = 5000. Sets the wait time interval value, in milliseconds. When exceeded, the driver
will notify communication time-out for the CTS serial parameter.
Sets the time within which each individual write operation must be completed, at low level (Window
API) in the serial port.

DSR Timeout
Default value = 5000. Sets time-out value in milliseconds which will also be notified to the DSR serial
parameter by the driver. This property sets the maximum time-out between the reception of one
character and the next, which will also be the maximum time within which each single read operation
must be completed at low level (Windows API) in the serial port.

3.6. Bridging Service Settings
In this group of settings you will need to set configurations inherent to the Bridging function of the
selected station.
The Bridging functions let the user opt to use the Supervisor as a 'bridge' for tele-services rendering
it transparent for any remote communication through modem ports from PC to PLC, meaning that
the PLC can be accessed directly from a remote PC by using the driver communication port.

The illustration below demonstrates this type of connection:

S T A T I O N S E T T I N G S

21

The driver will interrupt its communication during access in
'external bridging'.

Enable
Enables the Bridging Function. When set to True, the driver attends to the specified serial port:
 when a remote call is made (i.e. by tele-service), the driver disconnects the Supervisor from the PLC
and connects the modem port with the port connected to the PLC, in transparent mode, until
disconnected by command automatically restoring the Supervisor's communication.
The service is disabled by default.

Port
Here you need to specify the number of the COM serial port the modem is connected to and which is
to be used for the Bridging service.

Note: you need to make sure that no conflicts occur in Windows when using
ports. For instance, when installing the Com4 port, you need to make sure
that the assigned address and the IRQ are compactible with the PC's
configuration. In order to do this we advice you use addressable serial
cards.

Baudrate

Sets the velocity of the serial communication (Baud Rate). The value of the communication's velocity
must correspond to that of the device to communicate with.

Byte Size
Sets the amount of bytes required by the communication protocol in use.

Parity
Sets the parity type required by the communication protocol in use.

Stop Bits
Sets the number of Stop Bits required by the communication protocol in use.

Flow Control
Sets the data Flow Control type for the type of communication in use. This property permits the flow
of communication data from the connected device's serial port to be adapted to low level protocol
requirements. The default value, 'None', means no flow control, nevertheless it might be necessary
to select a flow control type (i.e. when signalling errors with code '1').
The options are:

None: No Flow Control. Protocol does not require this control
Hardware: The Flow Control is managed by the serial line's electrical signals (eg. RTS, CTS,
etc.)
Xon/Xoff: The data Flow Control is Xon/Xoff

Rx Queue

Sets the quantity of data bytes to be managed by the serial port to buffer values being received. The
default value will be used if not specified differently.
Expert users can change this value to adapt it to the needs of the system being used.

Tx Queue
Sets the quantity of data bytes to be managed by the serial port to buffer values being transferred.
The default value will be used if not specified differently.
Expert users can change this value to adapt it to the needs of the system being used.

C O M M U N I C A T I O N _ D R I V E R S

22

CD Timeout
Currently not in use. Will be implemented in the near future.

CTS Timeout
Sets the time-out value in milliseconds which will also be notified to the CTS serial parameter by the
driver. This property sets the time within which each single write operation must be completed at
low level (Windows API) in the serial port.

DSR Timeout
Sets time-out value in milliseconds which will also be notified to the DSR serial parameter by the
driver. This property sets the maximum time-out between the reception of one character and the
next, which will also be the maximum time within which each individual read operation must be
completed at low level (Windows API) in the serial port.

Display Dialog
When enabled (=True), it allows the Supervisor to display a dialog window upon connecting in
Bridging to let the local user cancel the connection by remote control.

Disconn.Delay
Sets the delay time in milliseconds from receiving the disconnection signal, to effectively activating
the closure of the bridging connection.

Connection String
Sets the string received from the modem which determines the remote connection request. Upon
receiving this string the driver will activate the bridging service request.

Disconnection String
Sets the string received from the modem which determines the request to disconnect the remote
connection. When receiving the string, the driver will deactivate the bridging service and restore the
driver's communication.

Init String
Sets the modem's initialization string (i.e. AT&FS0=1).

OK String
Sets the modem's OK string.

3.7. TAPI Settings (serial drivers only)
The TAPI functions allow the driver to connect to remote stations via modem in automatic and
transparent mode.
When you need to connect remote PLCs or devices via modem to the Supervisor, the TAPI functions
allow you to manage the communication protocol after having established the remote connections.

The diagram below demonstrates this type of connection:

The modem of the PLC Server must be configured ready to receive calls from the Supervisor. The
Supervisor will automatically start a call to the destination modem, for the interested driver stations,
when the tags belonging to those stations go in use.

The serial is managed by the modem's driver when the station's TAPI settings are used for managing
communications via modem. The settings with which the serial is opened are therefore those defined

S T A T I O N S E T T I N G S

23

in the modem's driver's advanced properties and may be different to those set for the Movicon driver
station ("Serial Port Settings").

Please remember that the resources 'always in execution' (being
Data Loggers, Alarms, Schedulers, General Logic) always keep the
tags in use.

TAPI functions are enabled only by setting the 'Enable' property
value to True

TAPI connections may behave in different ways when calls fail depending on the settings defined in
the station. The combinations are as follows:

1. In situations using the station's status variable ("State/Command Variable") with the "Dial
Only on Command" property enabled and calls fail, the following behaviour will result:

 The "Bit 1" of the status variable is set at "True" after programmed call attempts
have been made without success

 An error will appear in the historical log describing the reason why the call was
unsuccessful

 The "Bit 1" of the status variable is automatically set at "False" by the driver when
another connection is in command ("Bit 5")

2. In situations using the station's status variable ("State/Command Variable") with the "Dial

Only on Command" property disabled and calls fail, the following behaviour will result:

 The modem will start the call when the station's variables go in use (ie. upon
loading a page)

 The "Bit 1" of the status variable is set at "True" after programmed call attempts
have been made without

 An error will appear in the historical log describing the reason why the was
unsuccessful

 If the "Bit 1" is set at "False" (the station will reactivate), the driver will then try to
call the station again if there are still active tasks towards the station

3. In situations without using the station's status variable ("State/Command Variable") and the

call fails, the following behaviour will result:

 The driver will try to connect to the station if there are still active tasks towards
that station. Following attempts are those specified by the "Retries" parameter,
then the connection goes on hold between one group of attempts and the next for
the amount of time specified in the "Retry Hold Time (sec)" parameter

Phone Number

Sets the telephone number of the remote station to be connected to.
You can enter the name of a Supervisor string variable for drivers using driver base library build 250
and later. In this way you can define the phone number to call at runtime, assigning the proper
value to this variable during supervision execution.

Retries
Defines the number of consecutive call attempts (without hold) in cases of connection failure to
remote station. When set at the value "0", only one call attempt will be made, after which it will be
put on hold for the time set in the "Retry Hold Time (sec)" parameter and then only one more call
attempt will be made.

Disconnect After
Sets the time of inactivity, in seconds, before disconnecting. The connection is made as soon as the
interested tags go into use in the project. When the interested tags are not in use, the Supervisor
will disconnect after the set time expires.

Retry Hold Time (sec)
Defines the hold time in seconds between one group of call attempts and the next. The number of
calls in each group is determined by the value set in the "Retries" + 1 parameter. There are no
maximum limits on the number of call attempts which can be made. The driver will continue retrying
for the length of time the station remains active and the driver's associated variables will continue to
remain in use.

C O M M U N I C A T I O N _ D R I V E R S

24

Enable

Enables, if set to True, the TAPI functions and calls via modem to the remote device.

Prompt before connect
When enabled (True), the system displays a dialog window asking confirmation before sending the
call and activating the remote connection every time it has to execute connections via modem.

Show Dlg
When enabled, the system will display a dialog window to inform the user about the connection in
action and its status.

Dial only on command (only available for drivers using driver base library build 250 and
later)

When this property is enabled, the modem connection will be activated only on command, using the
appropriate bit of the State/Command Variable (bit 5, Open modem connection), and stopped using
the same variable (bit 6, Close modem connection). See "State/Command Variable" for details. This
option is useful when communicating with multiple remote stations using only one modem to call.
The designer can configure a driver station for each remote station, each one with a different phone
number and a different State/Command Variable. At this point the user can connect to one remote
station at a time using the specific State/Command variable. When data exchange with the current
remote station is over, it will stop communications and then connect to another station.

3.8. TCP/IP Settings (ethernet drivers
only)

In this group of settings you will need to set, for the selected station, the configurations inherent in
the TCP-IP Ethernet access parameters.

Server Address
Specify the IP address or the name of the server or the network device to be connected to.
Examples: 192.168.0.1; localhost; server1

Server Port
The number of the TCP port of the server or device to be connected to. This value completes the
device's IP address. For instance, the 502 port is always used for the TCP-IP Modbus (as established
by the protocol), but when dealing with other devices please refer to their documentation.

Backup Server Address
The backup server IP address or name. If this address is set, the driver will try to connect to the
backup server when unable to communicate with the 'primary' server. This happens in a redundancy
situation at driver level. If communication with the backup server is interrupted, the driver will try to
connect to the primary server again and so forth.

Switch Server Timeout
The time entered here, in milliseconds, is the time which passes between a communication error
verified on one server and an attempt to connect to the other one.

Local Bound Address
The local IP address is entered in this field, being the one from the PC's ethernet card you intend to
use for communicating. Normally this property is left empty and used only when more than one
ethernet card has been installed on the PC. The system will use the operating system's default
address, when left empty.

Local Bound Port
The local TCP port address, referring to the PC's ethernet card which you intend to use for
communicating, is entered in this field. Usually this field is left empty, unless required by the protocol
or device being used.
Leaving the default value, the operating system will decide which port to use.

S T A T I O N S E T T I N G S

25

3.9. RAS Settings (ethernet drivers only)
The RAS (Remote Access Service) connection is a Operating System function that allows a Server-
Client type connection between two stations using a connection via Modem. Once the connection has
been established the TCP/IP protocol can be used for exchanging data between Server and Client.
The RAS connection can be created from the "Control Panel - Network Connections". The
configuration procedure may change slightly according to the Operating System being used.
To make this possible you need to create an "Incoming Connection" on the PC Server, so that when
the Client makes a call and connection is established, the two PCs will be linked as if they were
networking with each other.

The driver's RAS functions allow you to connect the supervision to a remote network via modem in
automatic and transparent mode.
When needing to connect to network devices from remote PCs, the RAS function lets you manage
the network communication protocol after having established the connection with the modem
through accessing a RAS Server, being a PC for accessing the network which can be reached via
modem. After gaining RAS connection, the driver can access to the network.

The diagram below demonstrates this type of connection:

The modem of the RAS Server must be configured ready to receive calls from the Supervisor. The
Supervisor will automatically start a call to the destination modem, for the interested driver stations,
when the tags belonging to these stations go in use.

In this group of settings you need to set, for the selected station, the configuration inherent in the
access parameters to remote devices by means of the RAS functions of the operating system.

Please remember that the resources 'always in execution' (being
DataLoggers, Alarms, Schedulers, General Logic) always keep tags in
use.

RAS functions are enabled by setting the 'Enable' property value to
True only

Dial-up

Permits you to specify the name of one of the RAS Connections set in the operating system. When
left empty, the driver will ask you to enter manually the telephone number, username and password
of the station to be connected to when you try to connect.
The connection will be requested as soon as one of the associated tags goes into use in the running
project.

If no predefined RAS connection has been specified in the Dial-up property, you need to specify a
phone number, a user name and a password to access remote stations.

Phone Number
Sets the telephone number of the remote station to be connected to.
For drivers using driver base library build 250 and later you can specify the name of a Supervisor
string variable here. By doing this you can define the phone number to call at runtime, assigning the
right value to this variable during supervision execution.

User Name
Sets the username for accessing the remote station.

Password
Sets the password for accessing the remote station.

Retries
Sets the maximum number of connection attempts if the first one fails. When this number runs out
and all attempts have failed, an error will be alerted.

C O M M U N I C A T I O N _ D R I V E R S

26

Disconnect After

Sets the time of inactivity, in seconds, before disconnecting. The connection is made as soon as the
interested tags go in use in the project. When the interested tags are not in use, the Supervisor
disconnects after the set time expires.

Retry Hold Time (sec)
Sets the time, in seconds, the driver should wait before retrying to connect.

Enable
If set to True, the RAS functions and calls via modem to the remote device are enabled.

Prompt before connect
When enabled (True), the system displays a dialog window asking confirmation before sending the
call and activating the remote connection every time it has to execute connections via modem.

Show Dlg
When enabled, the system will display a dialog window to inform the user about the connection in
action and its status.

Dial only on command (only available for drivers using driver base library build 250 and
later)

When enabling this property, the modem connection will be activated only on command, using the
appropriate bit of the State/Command Variable (bit 5, Open modem connection), and stopped using
the same variable (bit 6, Close modem connection). See State/Command Variable for details. This
option is useful in case of communication with multiple remote stations using only one modem to
call. The designer can configure a driver station for each remote station, each one having a different
phone number and a different State/Command Variable. At this point the user can connect to one
remote station at a time using the specific State/Command Variable. When data exchange with the
current remote station is over, the operator can stop communication then connect to a different
station.

3.10. Special TAPI and RAS
configurations

RAS and TAPI techniques are used by the driver to manage supervision projects involving remote
control. A number of different system architectures require special care in project design.

Most common remote control architectures are:

1. One remote station and a supervision using only one modem for communication
2. Various remote stations, placed in different areas, and a supervision using only one modem

for communication
3. Various remote stations, located in the same area and connected in a network, and a

supervision using only one modem for communication

Possible solutions for best communication management are:

1. No special configuration is needed in this case. One station should be defined for the driver
and the call management can be both automatic (the driver starts a call when the tags go in
use) or manual, using the State/Command variable for that station

2. Two or more stations should be defined, each one having its State/Command variable. The
calls to different stations should be managed through the State/Command variable in order to
avoid simultaneous calls to different stations

3. Two or more stations should be defined, each one having its State/Command variable, but
only one station can be used for the RAS or TAPI call. Once the connection has been
established for the "main" station, communication with other stations will be activated using
the bit 1 of the State/Command variable for each station

For further detail about Station settings and State/Command variable see General (Station)

27

4. Task Settings

4.1. Tasks
In this selection you need to insert and set the static communication tasks when you intend to use
this communication technique.

Please remember that the Supervisor offers you the possibility to set the
driver's communication using the 'task' concept or the dynamic tasks
concept. The dynamic tasks are automatically created by the driver at the
project startup, based on the links to device's addresses set in the 'Dynamic
Address' properties of each single tag.

The communication tasks allow 'static' tasks to be assigned to the driver, which will be executed
polling the device provided.

By using the communication technique in tasks, you need to set, in static
mode, the relationship between the Supervisor variables and the device
addresses.

Add
The 'Add' button allows you to insert a new static Task for the communication driver. When a new
task is inserted, a window will automatically be displayed to set the requested parameters.
The inserted tasks can be edited or removed afterwards by using the buttons described below.

Edit
The 'Edit' button allows you to change the parameters of existing tasks. You first need to select the
task desired and then use the 'Edit' button or double-click.

Remove
The "Remove" button allows you to delete existing tasks. You first need to select the task desired
and then use the 'Remove' button.

4.2. Static Tasks
Station

The name which identifies the station corresponds to the device you intend to communicate with. At
least one station must be set for each task.
When more than one station has been defined, you need to select here the station where the task is
to be executed.

Task Name
The name which identifies the task. Any identification string can be used to identify the Task.
Each task must have an unique name.

Variables
Allows you to associate which Supervisor's tag (or tags list) the task is to manage. Using the ellipse
button to the right you can select any tag previously inserted into the project's Real Time Database
or create new tags. These will be added automatically in the project's Real Time Database. The tags
in Variables field must be separated by a ';'character and should be consecutive starting
 from the device address set in Device address field.

It is strongly recommended that the variables list includes tags of the
same data type, otherwise unpredictable errors may occur.
A structure tag, whose members have different data types can be
used to address a group of tags, with different data types, with a
static task.

C O M M U N I C A T I O N _ D R I V E R S

28

The driver automatically calculates the number of bytes to read/write from/to the device starting
from the device address by adding the byte size of each tag present in the 'Variables' Task Property.
The driver will then read or write a byte-aligned, raw buffer whose starting address is the one
specified in the 'Device Address' property, and map it to each tag, according to each tag's offset and
size in the buffer.

The driver performs additional checks according to the specified addressing:

Bit Addressing
When accessing bits on the device, all tags in the 'Variables' list must be declared in the Tag
Database as Bit type, otherwise an error will show. The number of bits to be exchanged with the
device equals the number of tags in the 'Variables' list. The starting address is the one specified in
the 'Device Address' property.

Byte, word or double word addressing:
None of the tags in the 'Variables' list must be declared in the Tag Database as Bit type, otherwise
an error will show.

Conditional Variable
Allows you to associate a project variable whose status will determine the communication task's
execution condition. By using the ellipse button to the right you will be able to select any tag
 previously inserted into the project's Real Time Database or create new ones. These will be added
automatically in the project's Real Time Database.
The variable (of any type) will therefore condition the task's execution: when set to a value other
than zero (><0) the communication task will be executed by the driver.

When the execution of the task has been completed the driver
automatically sets the value of the conditional variable to zero.
Therefore this needs to be taken into account when variables are
managed by logic.

Polling Time

This parameter, expressed in milliseconds, determines the minimum polling time of the each single
task's execution for updating data when the variables are in use.
The Polling Time default value, inserted when creating the task, is determined by the value
established in the driver's General properties ("Polling Time"), but can be modified as pleased for
each single task. The value equal to zero means that data will get updated at the highest possible
speed.
A higher value can be set, for instance, when data does not require fast updating times.

Unused Polling Time
This parameter, expressed in milliseconds, allows you to force a data update of each task even
when the variables are not in use, by establishing a polling time.
The Unused Polling Time default value, inserted when creating tasks, is determined by the value
established in the driver's General properties ("Unused Polling Time"), but can be changed for each
single task as pleased.
Setting this value to 10000 (being 10 seconds) means that the task will be executed with the
minimum time of 10 seconds even when its variables are in use.

When this parameter is set = 0, the tasks will not be executed when
the variables are not in use.
When this parameter is higher than 0, ALL the project tags that are'
not in use' are read with this frequency, if the task is a read or
read/write one. This may slow the supervision down if many tags are
defined in project.

Address offset variable (only available for drivers using driver base library build 250 and
later)

Specify here a tag name of numeric integer type. The tag's value can be modified at runtime and will
be used as an offset +/- with respect to the starting address set for the task. It will be possible to
read in different points of the device memory area (before or after the start address) by changing
the address offset tag value at runtime.
The offset unit depends on the driver and on the address type:

 for addressing method based on bit, an offset value = 1 corresponds to one bit
 for drivers whose addressing method is based on bytes, an offset value = 1 corresponds to

one byte

T A S K S E T T I N G S

29

 for drivers whose addressing method is based on words, an offset value = 1 corresponds to
one word

The user who sets the value for the address offset tag should use meaningful values: i.e. to read the
next word using a Siemens driver the offset value should be set to +2, since the valid addresses for
word tags are only the even values. In cases where the Modbus driver is concerned, the offset value
should be set to +1 since its addressing is based on words.

Caution: also when changing the offset value, the tasks will not be executed
immediately but only when needed. Therefore, for instance, an Exception output task
will be executed with a new offset only when the associated variable's value is modified.
So you can check whether a task has been executed with the conditional variable.

As an example, in order to write the same value in more addresses using the offset tag, you can
create an Unconditional Output task with a conditional variable. The write operation will be executed
changing the value of the offset tag and setting the conditional variable. When reset, the task has
been completed and the offset tag's value can be change to write the following address.

Swap Byte
This selection allows you to swap the bytes in 'word' type data. When doing this the data linked to
the Supervisor and the device will have the 'high' byte swapped over with the 'low' byte and vice-
versa, for each word type data of the task.

Swap Word
This selection allows you to swap the words in 'double words' type data. By doing this the data
linked to the Supervisor and the device will have the 'high' word swapped over with the 'low' word
and vice-versa, for each double word type data of the task.

Type
In this selection you can set the execution type you want to assign to the task.
The options offered are:

Input This option sets the task as 'Read Only'.
So when the variables are in use, the driver executes read polling
operations in the device and transfer the read data values to the
related project variables.

Input/Output This option sets the task as 'Read-Write'.
So when the variables are in use, the driver will execute the read
polling operations in the device, and transfer read data values to
the related project variables. When a variable changes its value in
the Supervisor, the driver writes data to the device, then goes back
to reading.

Exception
Output

This option sets the task as 'Write Only', thus managing data on
exception, which means only when there is a data change in the
Supervisor.

Unconditional
Output

This option sets the task as 'Write Only', thus continuously writing
to the device, independently of data changes.

Write Outputs at Startup

This property is meaning card you need to define the settings inherent in the 'General' properties
group for the selected task.

Device Data
The parameters of this group refer to addressing the memory areas of the specified device.
Please refer to the documentation of the specific driver and to protocol specifications.

C O M M U N I C A T I O N _ D R I V E R S

30

4.3. Dynamic Tasks
Dynamic tasks are automatically created by the driver at project startup, based on the links to
device's addresses set in the 'Dynamic Address' properties of each single tag.
Settings for dynamic tasks are not configured through the "Driver Settings " window but are specified
for each tag through the "Tag Browser" window.

To set 'Dynamic' properties for a tag, select the 'Real Time DB' resource and the 'List Variables' node
in the tree from the Supervisor 'Project Explorer' window. Select the tag of interest, then go to the
'Properties' window and click on the ellipse button to the right of 'Dynamic' property.
The 'Tag Browser' dialog will open, choose the 'Comm Drivers' tab and double click on the most
suitable driver to get the 'Task properties' page.

Inserting Tag "Physical I/O addresses"
To set the dynamic properties of tags, select the RealTimeDB list variables (tag) from the Project
Explorer window, then select the individual tag desired and display its Properties Window. Click the
button to the right of the "Dynamic" property to open the "Tag Browser" window.

Tag Browser Window.

Select the "Comm. I/O Drivers" tab to view the list of drivers, inserted in the project, with their
predefined dynamic links. You will also find an "Add/Edit..." button, used for opening the "Task
Properties" window for editing the dynamic links, and a "remove" button used for deleting the pre-
selected dynamic link.

Task Properties window.

Once the "Tag Browser" window has been opened, you can insert/edit dynamic links in the following
ways:

T A S K S E T T I N G S

31

Inserting a new dynamic link

1. open the "Tag Browser" window through the "Dynamic" property
2. select the name of the driver you wish to use
3. click on the "Add/Edit..." button to open the "Task Properties" window
4. if the variable does not have any assigned dynamic links, the "Task Properties" window will

open showing its default values. On the other hand, if the variable has an assigned dynamic
link, the "Task Properties" will open showing the value of that link. Set the parameters
desired

5. close the "Task Properties" with "OK". Upon doing this the dynamic address will be
composed with the set values and added to the new link in the list of dynamic addresses and
focused on

6. close the "Tag Browser" window with Ok to insert the dynamic link into the variable's
"Dynamic" property

Editing an existing dynamic link

1. open the "Tag Browser" window from the variable's "Dynamic" property
2. select the desired dynamic link from driver list and click on the "Add/Edit..." button to open

the "Task Properties" window
3. if the variable does not have any assigned dynamic links, the "Task Properties" window will

open showing the values of the selected dynamic link. If the variable already has a dynamic
link, the "Task Properties" will open with the values of that link. Therefore set the parameters
desired

4. close the "Task Properties" window with "OK" upon which the dynamic address will be
composed with the set values updating the link in the list of dynamic addresses and given
focus

5. close the "Tag Browser" window with Ok to insert the dynamic link into the variable's
"Dynamic" property

Selecting an existing dynamic link

1. open the "Tag Browser" window from the variable's "Dynamic" property
2. select the desired dynamic link from driver list
3. close the "Tag Browser" window with Ok to insert the dynamic link into the variable's

"Dynamic" property

Keep in mind that the list of a driver's dynamic links displayed in the Tag Browser window is only
used by the programmer as a reminder or for selecting. Once a link has been assigned to the
variable it can be removed from the list without causing any damage to the project. The dynamic link
list is saved in the ".dyndrv" file of the driver in the project's "RESOURCES" folder. If you delete this
file, the list of dynamic links inserted in the "Tag Browser" window up to that moment will no longer
be available. Only the dynamic address previously assigned in the variables' "Dynamic" properties
will remain saved.

Dynamic Task Properties
The dynamic link settings of variables can be defined using the "Task Properties" window. In this
window you can assign the task's general properties in the 'General' group, and the those properties
used for entering the device addresses which vary according to device type. Below you will find a
description on each of the task's general properties. Please refer to the Driver's help for device
address specifications.

Station
The name which identifies the station corresponds to the device you intend to communicate with. At
least one station must be set for each task.
When more than one station has been defined, you will need to select the station where the task is
to be executed.

Conditional Variable
Allows you to associate a project variable whose status will determine the communication task's
execution condition. Using the ellipse button to the right you can select any tag previously inserted
into the project's Real Time Database or create new tags which will then be added automatically in
the project's Real Time Database.
The variable (of any type) will therefore condition the task's execution: when set to a value other
than zero (><0) the communication task will be executed by the driver.
When the execution of the task has been completed the driver will automatically set the value of the
conditional variable to zero. Therefore this needs to be taken into account when variables are
managed by logic.

C O M M U N I C A T I O N _ D R I V E R S

32

Swap Byte
This selection swaps bytes over in "word" type data. This means that data linked between the
Supervisor and device will be seen with the "high" byte inverted with the "low" byte and vice versa,
for each task word data type.
This property is only available for some drivers.

Swap Word
This selection swaps words over in "double word" data types. This means that data linked between
Supervisor and device will be seen with the "high" word swapped over with the "low" word and vice
versa for each task double word data type.
This property is only available for some drivers.

Type
In this selection you can set the execution type you want to assign to the task. Possible values are:

Input This option sets the task as 'Read Only'.
So when the variables are in use, the driver executes read polling
operations in the device and transfer the read data values to the
related project variables.

Input/Output This option sets the task as 'Read-Write'.
So when the variables are in use, the driver will execute the read
polling operations in the device, and transfer read data values to
the related project variables. When a variable changes its value in
the Supervisor, the driver writes data to the device, then goes back
to reading.

Exception
Output

This option sets the task as 'Write Only', thus managing data on
exception, which means only when there is a data change in the
Supervisor.

Unconditional
Output

This option sets the task as 'Write Only', thus continuously writing
to the device, independently of data changes.

#Elements

Specifies the number of elements to be read/written by the driver. Possible values are 0 and 1 only.
If left at zero, the driver automatically calculates the number of elements to be read/written in the
device data area, on the basis of the tag data type. For example, in a WORD area, for a tag whose
data type is word one element is read/written, whereas two elements are read/written for a float
tag.
If set to one, only one element is read/written, no matter what the tag data type is. For example, in
a WORD area, only one element (one word) is read/written for a float tag.

Write Outputs at Startup
This property is meaningful only for Input/Output or Exception Output tasks. When set to True the
task is executed in output when the project starts up.

33

5. Import Device Database

5.1. Import Device Database
Thanks to this important feature, you can directly access the database of a PLC or an equivalent data
source of a device to import the desired Tags into the Supervisor project.
When terminating this operation, the project's Real Time Database will automatically fill up, by
inserting all the imported tags, which will be defined as Dynamic Tags in the 'Not Shared' areas, with
the corresponding tag type and with the address already assigned for the device.

When right clicking on the Driver name in the Project explorer window and selecting "Import Device
Database", you will be prompted to select the 'data source', being the PLC database, the symbolic
file or the .CSV file obtained from the PLC data or device explorer.
After getting the file desired, you will be shown the window, as illustrated below, which displays the
variables it contains.

Attention: Importing data from the PLC is supported in all the drivers for
the most well-known devices. Check the access modalities or 'data source'
requirements, which may vary from one device to another.

If variables that are already in the RealTimeDB are recovered while
importing data, they will be overwritten without requesting confirmation
beforehand. Those that will be overwritten include the "Data Type" and
"Fixed I/O Address" properties but the "Tag Description" property will
remain the same and will only be imported if the variable is not already in
project's RealTimeDB.

The import operation will take longer to complete when a large number of
variables has been selected and can however be aborted by using the "ESC" key.

Importing Structures and Arrays using the device's Data Base's import tool can be done in two
different modes:

If the Structure's root is selected from the tool's dialog window following by activating the "import"
button, a prototype defined with the structure's members and a variable of the same prototype will
be created in the project. After this happens, it will then be possible to import a multiple selection of
structures. This can also be done using the "Select All" button and then the "Import" button.

C O M M U N I C A T I O N _ D R I V E R S

34

If one or more members of one or more Structures are selected and then imported, variable types
corresponding to those of the selected members will be created and not those of the structure
prototypes. The same result can be obtained clicking on the "Expand All" button to explore the
Structures' members, then clicking on the "Select All" button to select them all and then finally on
the "Import" button to import each member as distinct variables.
If each single variable as well as the Structure variables are on the device's variable list, when used
the "Select All" button will select them all.

When importing Arrays, select then import the root of the Array to create an Array type variable with
its "Element Type for Array" property set to the Array type. The same can be done using the "Select
All" button and then the "Import" button.
If one or more elements or Arrays are selected and then imported, variables corresponding to the
selected elements will be created but not the Array type variables. This same result can be obtained
by clcking on the "Expand All" button to explore the Array elements, then clicking on the "Select All"
for selecting them all, followed by clicking the "import" button to import each single element as
distinct variables.
If each single variable as well as the Array variable are on the device's variable list, the "Select All"
button will select them all when clcked on.

Select All
Allows you to select all the variables from the importation file.
Use the CTRL+Click or SHIFT+Click keys for partially selecting variables.

Select None
Allows you to deselect all the variables from the importation file.
Use the CTRL+Click or SHIFT+Click combo keys for partially deselecting variables.

Browse File...
Allows you to change the origin file, by activating the standard window for file selection.

? (help)
Activates the guide containing information relating to the origin data format requirements.

Import
Activates the importation of variables from the origin file (device's data source) to the Supervisor
project. When the importation has terminated, the project's Real Time Database resource will result
as being populated with all the imported variables.

As the 'data sources' depend on the device and might change, it is
advised to always check the imported variables' properties to see
whether the automatic parsing, the type assigned and the device's
address have been executed correctly when the importation has
terminated.

Cancel

This button cancels the importing operation.

Station:
This box allows you to select the driver's station to be assigned to the imported variables, when the
driver has been set with more than one station.

35

6. Errors

6.1. Error Descriptions
Errors are grouped by scope and are listed in alphabetical order.

Design errors
Error message Scope Gravity Possible cause Possible solution
Internal Error in file
'<file_name>' at the line
<line_number>. Please
contact the Technical Support

design serious problem in user interface
controls creation or
configuration files access

call support center

Invalid Address Offset
Variable. Enter the name of
an existing integer variable

design warning the selected variable is not
of a valid type.

choose an existing integer
variable from the tags database.

Invalid conditional
variable'<variable_name>'
for the task '<task_name>'

design warning the selected variable is not
valid: does not exist or has
been cancelled or is of a
wrong data type.

choose an existing integer
variable from the tags database.

Invalid conditional variable.
Enter only one existing
variable of numeric type.

runtime warning the conditional variable is
not valid: does not exist or
has been cancelled or is of
a wrong data type.

choose an existing integer
variable of the tags database.

ListView out of memory design serious there is not enough
memory to manage
operation on stations list or
tasks list.

free some memory closing
processes or applications, restart
Supervisor or PC if needed.

Name <name>' is already in
use. Please, choose a
different name

design warning station name or task name
already existing.
Duplicated are not allowed.

change station or task name

Task size exceeds the
maximum allowed size for
this protocol

runtime warning the total size of the
variables belonging to the
task is bigger than the
maximum allowed size for
this protocol

reduce the number of variables
associated to this task

The selected Dynamic
Settings String is either
invalid or not allowed for this
Variable!

design warning the dynamic address string
specified for the variable is
invalid or not allowed

check address format and variable
data type

The selected COM port is
either not supported or is
being used by another
application. Please select
another port.

design warning the port number set in
Station/Serial port
settings/Port property is
invalid

allowed values for
Station/SerialPort settings/Port
property are positive integer (not
zero)

Value cannot be empty!
Please enter a value

design warning ethernet drivers only. The
values for TCPIP
station/Server address
property or Server port
property are invalid.

enter a valid Server address: IP
address in xxx.xxx.xxx.xxx
format, or server name i.e.
'server1'
enter a valid Server port number
:positive integer (not zero)

Value cannot be zero! Please
enter a number greater then
0

design warning the value for Rx queue size
or Tx queue size in
Station/Queue size
properties is invalid

enter a positive integer (not zero)

Variable '<variable_name>'
is not valid for the task
'<task_name>'

runtime warning the selected variable is not
valid: does not exist or has
been cancelled or is of a
wrong data type

choose an existing variable of the
tags database. Check task design
and addressing rules.

C O M M U N I C A T I O N _ D R I V E R S

36

Address validation errors
Error message Scope Gravity Possible cause Possible solution
Job <job_name>
(station
<station_name>) is
invalid and cannot be
promoted to the
protocol mng

runtime serious the task is not valid and
will not be executed

check task communication parameters

Setting of addresses for
fields of the structure
<structure_name>
interrupted on
unsupported field
<field_name>

runtime warning error in managing
structure members'
addressing due to member
type (string or double):
only structure members
preceding them in
structure's members order
can be properly addressed.

modify structure members or use
single tags for data type like string or
double

The Task <task_name>
for the Station
<station_name> is
invalid

runtime serious the task is not valid and
will not be executed

check task communication parameters

Hardware errors
Error message Scope Gravity Possible cause Possible solution
Error loading
<drivername>.dll

runtime fatal the driver dll file has not
been found

check if <drivername>.dll file is
present in 'Drivers' subfolder under
Supervisor installation folder

Communication errors
Error message Scope Gravity Possible cause Possible solution
Communication error :
station <station_name>,
error
<error_description>

runtime various this is the generic message
for communication errors:
error description gives a
detail explanation of the
error source

check the possible error source as
suggested by error description

Error ! Driver has
already been initialized !

runtime fatal unexpected behavior of the
driver, an attempt to
initialize it was made but
the driver was already
running.

call support center

Failed to open the
communication device.
The configurated COM
port is either not
supported or is being
used by another
application

communi-
cation test

serious failed to open serial port
(serial drivers) or
communication socket

check if port number is correct,
check cables connection, check if
port is in use by another
application, check device
accessibility

Communication messages
Message Scope Gravity Possible cause Possible solution
Communication established :
station <station_name>

runtime info the communication has been
established properly

Communication restored runtime info the communication has been
restored after a communication
problem

Station quality changed :
station <station_name>,
quality bitfield
<quality_value>

runtime
(debug
window)

info the quality of the station's data
changed: possible values are
 bad, good, uncertain, not
connected

Task <task_name> (Station
<station_name>) is now in
use...

runtime
(debug
window)

info if in-use management is on, the
dynamic tasks are activated or
deactivated according to tags in
use.

Task <task_name> (Station
<station_name>) is now NOT
in use...

runtime
(debug
window)

info if in-use management is on, the
dynamic tasks are activated or
deactivated according to tags in
use.

A B O U T

37

The station <station_name>
has switched from server
<primary_server_name> to
 <secondary_server_name>

runtime info applies to Ethernet driver only. If
a backup server has been defined
in Network services/Redundancy
property and the primary server is
down, the station connects to the
 backup server, or vice-versa.

Serial communication errors (serial drivers only)
Error message Scope Gravity Possible cause Possible solution
Break Detect ! runtime serious the line state is a break

state, so there is no
communication

check cable connection and device
settings on both device and
supervision

Carrier Detect Timeout ! runtime serious the driver did not receive
the expected answer in the
maximum allowed interval
(timeout)

check cable connection and device
settings on both device and
supervision

Clear To Send Timeout ! runtime serious the driver did not receive
the expected answer in the
maximum allowed interval
(timeout)

check cable connection and device
settings on both device and
supervision

Data Set Ready Timeout ! runtime serious the driver did not receive
the expected answer in the
maximum allowed interval
(timeout)

check cable connection and device
settings on both device and
supervision

FATAL ERROR! The
Windows message queue is
full! Serial Comm
messages lost! Increase
the message queue depth.

runtime fatal self explaining self explaining

Frame Error ! runtime serious noise in the communication
line

remove possible noise sources,
check parity bit or stop bit values

Overrun Error ! runtime serious incoming data detected
while previous data have
still not been received; the
operating system is too
busy

reduce baud rate value, check
hardware, close applications that
can catch operating system
resources

Parity Error ! runtime serious noise on the
communication line

remove possible noise sources,
check parity bit value

Rx Timeout ! runtime serious the driver did not receive
the expected answer in the
maximum time interval
allowed (timeout)

check cable connection and device
settings on both device and
supervision, check RS232/RS485
converter settings, if any

Rx Buffer Overflow ! runtime serious the reception buffer is full,
possible loss of data

increase Station/Queue size/Rx
queue size, activate Station/serial
port settings/Flow control property
or hardware flow control if
supported by the device

The selected COM port is
either not supported or is
being used by another
application. Please select
another port.

runtime serious the COM port does not
exist or is already used by
another application.

check port number in
Station/SerialPort settings/Port
property; free the port closing the
application using it and restart the
PC if needed

Tx Buffer Full ! runtime serious the transmission buffer is
full, messages are not
exiting

increase Station/Queue size/Tx
queue size

Unexpected WM_QUIT
received !

runtime info the driver received a close
message from Windows
and is shutting down

TAPI errors (serial drivers only)
Error message Scope Gravity Possible cause Possible solution
Call to <phone_number>
has been hung up

runtime info the communication has
been stopped by the caller

Disconnected: Bad Address runtime serious the destination address is
invalid

check the if phone number to call is
correct

Disconnected: Busy runtime serious the remote user's station is wait for the remote user's station to

C O M M U N I C A T I O N _ D R I V E R S

38

busy be free
Disconnected: Congestion runtime serious the network is congested,

so the call can not be
placed

wait for the line to be free

Disconnected:
Incompatible

runtime serious the remote user's station
equipment is incompatible
with the type of call
requested

check remote user's station
equipment

Disconnected: Local phone
picked up

runtime serious the call was picked up from
elsewhere

Disconnected: No Answer runtime serious the call has been placed
but there was no answer,
so it has been
disconnected

Disconnected: No Dial Tone runtime serious a dial tone was not
detected when expected

check cables and line

Disconnected: Unknown
reason

runtime serious the call has been
disconnected for unknown
reasons

Disconnected: Unreachable runtime serious the called number can not
be reached

Line busy runtime warning trying to place a call while
the line is already busy

wait for the line to be free

Placing call to
<phone_number> ...

runtime info specifies the phone
number is going to be
called

Remote Party Disconnected runtime serious the communication has
been stopped by the
remote party (the receiver)

Remote Party rejected call runtime serious the call has been rejected
by the remote party (the
receiver)

TAPI in special information
state, probably couldn't
dial number

runtime serious the connection has failed

Unable to find modem
associated with <port>

runtime serious modem has not been found
on the specified port

check in the control panel if the
right port is assigned to the modem,
check modem settings and cables

Bridging errors (serial drivers only)
Error message Scope Gravity Possible cause Possible solution
A modem has been
connected to the
Bridging Port, station
<station_name>

runtime info

A remote device or
computer has taken
control through the
Bridging Port! - station
<station_name>

runtime info the bridging operation
started

Connection window
creation failed : station
<station_name>

runtime or
communi-
cation test

serious internal error: the driver
application can not create
the dialog window, for
example due to a lack of
memory resources

check available memory resources

Could not initialise the
Modem on the Bridging
Port, station
<station_name>

runtime serious the command for
initializing modem has
been sent but there was no
proper answer

check modem state, settings and
cables

Could not perform read
operation on the
Bridging Port, station
 <station_name>

runtime serious can not read data check modem state, settings and
cables

Could not perform write
operation on the
Bridging Port, station

runtime serious can not write data check modem state, settings and
cables

A B O U T

39

 <station_name>
Device control has been
restored - Bridging
ended! - station

runtime info end of the bridging
operations

Disconnection sequence
received on the Bridging
Port, station

runtime info there is no more bridging
activity so the
communication has been
stopped

The modem has been
disconnected from the
Bridging Port, station
<station_name>

runtime info self explanatory

Too many characters
received on the Bridging
Port, station

runtime serious

too many characters have
been received with respect
to the internal buffer size.

reset the bridging closing the
modem port

RAS errors (ethernet drivers only)
Error message Scope Gravity Possible cause Possible solution
Connection window
creation failed : station
<station_name>

runtime or
communi-
cation test

serious internal error: the driver
application can not create
the dialog window, for
example due to a lack of
memory resources

check available memory resources

RAS Dial Error :<error-
description>, Station
<station_name>

runtime or
communi-
cation test

serious see error description see error description

Station <station_name>'
is about to dial-up.
Continue ?

runtime info ask for confirmation before
calling.
This message appears only
if ' Prompt before connect'
property in station's RAS
settings has been set to
True.

Undefined RAS Dial Error
<error_number>,
Station<station_name>

runtime serious

generic error on RAS
connection

check RAS parameters in driver
station properties, check cable
connection, check RAS settings in
RAS server (PC receiving call)

7. About

Through this window you can checkout the selected Driver version and any associated descriptions
and comments.

Always check whether the Supervisor Driver file is the latest available, otherwise it
would be in your best interests to update the file (.DLL) by downloading it from the
local dealer support web site according to the modalities provided.

C O M M U N I C A T I O N _ D R I V E R S

40

M O V I C O N 1 1

Movicon™ is a trademark of Progea, related to the HMI/SCADA platform entirely developed and
produced by Progea. © 2012 All Rights reserved.
No part of this document or of the program may be reproduced or transmitted in any form
without the express written permission of Progea.
Information in this document is subject to change without notice and is not binding in any way for the
company producing it.

Via S.Anna, 88/E
41100 Modena - Italy
Tel. +39 059 451060
Fax +39 059 451061
Email:info@progea.com
Http://www.progea.com

 Via XX Settembre, 30
Tecnocity Alto Milanese
20025 Legnano (MI) Italy
Tel. +39 0331 486653
Fax +39 0331 455179
Email: willems@progea.com

Progea Deutschland GmbH
Marie-Curie-Str. 12
D-78048 VS-Villingen
Tel: +49 (0) 7721 / 99 25 992
Fax: +49 (0) 7721 / 99 25 993
info@progea.de

Progea International Ltd
via Penate 16
6850 Mendrisio - Switzerland
tel +41 (91) 9676610
fax +41 (91) 9676611
international@progea.com

 Progea USA LLC
2800 East Enterprise Avenue
Appleton, WI 54914
Tel. +1 (888) 305 2999
Fax. +1 (920) 257 4213
info@progea.us

